Course L3
 Signal theory

The Hilbert transform and analytic signals

Definition

If $s(t)$ is real, the Hilbert's transform of $s(t)$ is :

$$
H_{i}[s(t)]=\sigma(t)=\left[V P \frac{1}{\pi u} * s(u)\right]_{u=t}=V P \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(u)}{t-u} d u
$$

Which converges for almost all t for $s \in L^{p} \quad(1<p<\infty)$
This integral is considered in a Cauchian sense and the computation has to be done in the complex plane with the residual method.

Relation in the frequency domain

If we call : $\hat{s}(v)$ the Fourier transform of $s(t)$ and $\hat{\sigma}(v)$ the Fourier transform of $\sigma(t)$, then :
we know that: \quad if $\begin{aligned} & s(t) \leftrightarrow \hat{s}(v) \\ & \hat{s}(t) \leftrightarrow s(-v)\end{aligned}$ then if $\mathscr{F}(\operatorname{sgn}(t))=\frac{1}{j \pi v}$ then $\mathscr{F}\left(\frac{1}{\pi t}\right)=-j \operatorname{sgn}(v)$
(The sgn(.) function is odd)
We get: $\hat{\sigma}(v)=\mathscr{F}\left(H_{i}(s(t))\right)=-j \operatorname{sgn}(v) \cdot \hat{s}(v)$
1-That's mean that we get $\sigma(t)$ from $s(t)$ by a phase delay of $\pi / 2$.

2- In the particular case of narrow band signal, around v_{0}, a phase delay of $\pi / 2$ means, to delay of a quarter of HF period. This delay can be done on the sampled signal. Also, we know that, for a narrow band signal $B($ in $v>0)$, a sample in HF is equivalent to two samples as shown in the graph.
The samples in continuous line correspond to $\mathrm{s}(\mathrm{t})$ and the samples in dot fed line, to $\sigma(t)$. The knowledge of the 2 series or samples is equivalent to the analytic signal, as we will see later.

3-Examples

If $s(t)=\cos \omega_{0} t \quad$ then $\sigma(t)=\sin \omega_{0} t$
If $s(t)=\sin \omega_{0} t \quad$ then $\sigma(t)=-\cos \omega_{0} t$
A few properties :
a) $s(t) \perp \sigma(t)$ because $\langle s(t), \sigma(t)\rangle=0$ (by Parseval's theorem)
b) $\sigma(t)=H_{i}[s(t)]$ then $s(t)=-H_{i}[\sigma(t)]$
c) $s(t)$ and $\sigma(t)$ have the same norm in $L^{2} \quad\|s(t)\|_{2}=\|\sigma(t)\|_{2}$
d) ...

Analytic signal

By definition, the analytic signal associated to $s(t)$ is

$$
\varphi(t)=s(t)+j \sigma(t)
$$

Then of course :

$$
\hat{\varphi}(v)=2 H(v) \hat{s}(v) \quad \text { with } H(v)=\text { Heaviside distribution }
$$

Thus, $\varphi(t)$ is a signal with positive frequency components.
The hermician property of the Fourier transform is not conserved that means that it can't be a real signal.

Hilbert transform of $\sigma(t)$

We want to compute the Hilbert transform of $\sigma(t)$.

$$
s(t) \xrightarrow{H_{i}} \sigma(t) \xrightarrow{H_{i}} \rho(t)
$$

We have

$$
\rho(t)=\frac{1}{\pi t} * \sigma(t)=\frac{1}{\pi t} * \frac{1}{\pi t} * s(t)
$$

We can prove that

$$
\frac{1}{\pi t} * \frac{1}{\pi t}=-\delta_{t=0}
$$

Then :

$$
H_{i}\left[H_{i}[s(t)]\right]=-s(t)
$$

Remark :

$$
\hat{\rho}(v)=\mathscr{F}[\rho(t)]=-i \operatorname{sgn}(v) \hat{\sigma}(v)=-i \operatorname{sgn}-i \operatorname{sgn}(v) \hat{s}(v)=-\hat{s}(v) .
$$

Bedrosian's theorem

If 2 functions $f(t)$ and $g(t) \in L^{2}$ with the Fourier transform $\hat{f}(\mu)$ and $\hat{g}(\mu)$ respectively with :

$$
\begin{array}{lll}
\hat{f}(\mu)=0 & \text { for } & |\mu|\rangle B \\
\hat{g}(\mu)=0 & \text { for } & |\mu|\langle B
\end{array}
$$

Then :

$$
H_{i}[f . g]=f . H_{i}[g]
$$

Ceschi's theorem

If we consider 2 functions $f(t)$ and $\varphi(t)$ with :
1- $\varphi(t)$ is a complex rational function which can be put under the form :

$$
\frac{p}{q} \quad \text { with } \quad d^{\circ} q \geq d^{\circ} p+1
$$

q has only strictly negative imaginary part roots
2- $f(t)$ is a real rational function with the the positive or null imaginary part of the complex poles are equal to the zeros of $\varphi(t)$.
Then $\varphi(t)$ represents an analytic signal.
If writing $f \varphi$ under the form:

$$
\frac{p_{1}}{q_{1}} \text { we have } d^{\circ} q_{1} \geq d^{\circ} p_{1}+1
$$

Then $f \varphi$ represents also an analytic signal and noting g the real part of $\varphi(t)$

$$
H_{i}[f . g]=f . H_{i}[g]
$$

NB : we didn't use the hypothese of the Bedrosian theorem.

Causality

Writing that the transfer function of a stable system is the Fourier transform of a causal signal, i.e. of the impulse response $h(t)$ equal to zero if $t \leq 0$, we can write :

$$
h(t)=H(t) h(t) \quad \mathrm{H}(\mathrm{t}): \text { Heaviside distribution }
$$

In the frequency domaine, we can write :

$$
\hat{h}(v)=\frac{1}{2}\left[\delta_{\nu=0}+\frac{1}{j \pi v}\right] * \hat{h}(v)=-j H_{i}[\hat{h}(v)]
$$

Writing now $\hat{h}(\nu)$ with its real and imaginary parts

$$
\begin{aligned}
\hat{h}(v) & =a(v)+j b(v) \\
& =-j H_{i}[a(v)]+H_{i}[b(v)] \\
\text { then } & a(v)=H_{i}[b(v)] \\
\text { and } & b(v)=-H_{i}[a(v)] \quad \text { Kramers Kröenig relations }
\end{aligned}
$$

Which means that the real and imaginary parts of the transfer function of a causal system are not independant. They are linked by the Hilbert's transform. If we know one of them, we know the other !
Example 1.
If $G=P+j Q \quad G=P+j Q$ with $P(\omega)=\frac{1}{1+\omega^{2}}$, we can determine Q and G .
We can write : $Q(\omega)=-\frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{P(u)}{(\omega-u)} d u=-\frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{1}{1+u^{2}} \frac{d u}{(\omega-u)}$
And using the residual theorem we get :
$Q(\omega)=\frac{-\omega}{1+\omega^{2}} \quad$ and $\quad G=\frac{1}{1+\omega^{2}}-\frac{-j \omega}{1+\omega^{2}}=\frac{1}{1+j \omega}$
Example 2.
The impedance of a capacity constitutes a transfer function $G(\omega)=Z(\omega)=\frac{-j}{C \omega}$. If we consider that the capacity is stable, the real part of $Z(\omega)$ can't be equal to zero, because $H_{i}(0)=0 \neq \frac{-1}{C \omega}$.We want to determine this real part. Applying the last relation $a=H_{i}[b]$ we get with $B=\frac{-1}{C \omega}$;

$$
a=\frac{1}{\pi \omega} * \frac{-1}{C \omega}=\frac{-\pi}{C}\left(\frac{1}{\pi \omega} * \frac{1}{\pi \omega}\right)=\frac{\pi}{C} \delta_{\omega=0}
$$

Thus, it is more correct to write :

$$
Z(\omega)=\frac{\pi}{C} \delta_{\omega=0}-\frac{j}{C \omega}
$$

The impedance is infinite in $\omega=0$ and complex

Another relationship between a and b.

As $\hat{h}(v)$ is hermitian, $a(v)$ is an even function and $b(v)$ an odd function. Let us explore the impulse response.

$$
\begin{aligned}
h(t) & =\int_{-\infty}^{\infty} \hat{h}(v) e^{j 2 \pi v t} d v=\int_{-\infty}^{\infty}(a(v)+j b(v)) e^{j 2 \pi v t} d v \\
& =2 \int_{0}^{\infty} a(v) \cos 2 \pi v t \cdot d v-2 \int_{0}^{\infty} b(v) \sin 2 \pi v t . d v
\end{aligned}
$$

Like $h(t)=0 \quad$ if $\quad t<0$
We get :

$$
\int_{0}^{\infty} a(v) \cos 2 \pi v t . d v=\int_{0}^{\infty} b(v) \sin 2 \pi v t . d v \quad \text { if } \quad t<0
$$

Changing t by $-t$,

$$
\left.\int_{0}^{\infty} a(v) \cos 2 \pi v t \cdot d v=-\int_{0}^{\infty} b(v) \sin 2 \pi v t \cdot d v \quad \text { if } \quad t\right\rangle 0
$$

Thus we find the result :

$$
h(t)=4 \int_{0}^{\infty} a(v) \cos 2 \pi v t . d v=-4 \int_{0}^{\infty} b(v) \sin 2 \pi v t . d v
$$

Relation between gain and phase

When a transfer function $\hat{h}(v)$ has no pole in the right plane or on the $\operatorname{Im}()$ axis and no zero in the right plane and $\operatorname{Im}()$ axis too, then $\ln \hat{h}(v)$ is a function without singularity in the right plane and we can show that :

$$
\ln \hat{h}(v)=\ln |\hat{h}(v)|+j \cdot \arg \hat{h}(v)
$$

has the same properties, that means that the gain and phase are not independant. The Hilbert relationship links them by :

$$
\begin{aligned}
& \ln |\hat{h}(v)|=\frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{\arg \hat{h}(u)}{v-u} d u \\
& \arg \hat{h}(v)=\frac{-1}{\pi} V P \int_{-\infty}^{\infty} \frac{\ln |\hat{h}(u)|}{v-u} d u
\end{aligned}
$$

It is the case of the transfer function of minimum-phase,

Module and argument of the analytic function of $s(t)$

We have :

$$
\begin{gathered}
\varphi=s+j \sigma \\
\text { And } \quad|\varphi|=\sqrt{s^{2}+\sigma^{2}} \\
\text { Writing } \varphi \varphi^{\prime}=s s^{\prime}+\sigma \sigma^{\prime} \longrightarrow\left\{\begin{array}{l}
|\varphi| \geq s \\
|\varphi|=|s| \Rightarrow \varphi^{\prime}=s^{\prime}
\end{array}\right.
\end{gathered}
$$

Thus, the module of $\varphi(t)$ is always greater or equal to $s(t)$ and has the same tan at the contact points. It is why, $\varphi(t)$ is called the complex envelope of $\mathrm{s}(\mathrm{t})($ or of $\sigma(t))$.

Narrow band signal and analytic signal with carrier ω_{0}

If $s(t)$ is a narrow band signal, we can write :

$$
s(t)=e(t) \cos \left[\omega_{0} t+\alpha(t)\right]
$$

With $e(t)$ and $\alpha(t)$ having slow variations in front of $\frac{2 \pi}{\omega_{0}}$. Let us seek $\sigma(t)$ the Hilbert transform of $s(t)$. In the frequency space, we get $\hat{\sigma}(v)$ by $\hat{\sigma}(v)=\mathscr{F}\left(H_{i}(s(t))\right)=-j \operatorname{sgn}(v) \cdot \hat{s}(v)$ That means a phase delay of $\frac{-\pi}{2}$ for every frequency. But $\hat{s}(v)$ is a narrow band signal, this is equivalent to a delay of a quarter of period HF of $\hat{s}(v)$ equal to $\frac{1}{4} \cdot \frac{2 \pi}{\omega_{0}}$; then :

$$
\begin{aligned}
& \sigma(t) \simeq e(t-\tau) \cos \left[\omega_{0}(t-\tau)+\alpha(t-\tau)\right] \\
& =e(t-\tau) \cos \left[\left(\omega_{0} t-\frac{\pi}{2}\right)+\alpha(t-\tau)\right]
\end{aligned}
$$

But $e(t-\tau) \simeq e(t)$ and $\alpha(t-\tau) \simeq \alpha(t)$ because we are with slow variations .

Thus

$$
\sigma(t) \simeq e(t) \sin \left[\omega_{0} t+\alpha(t)\right]
$$

And :

$$
\varphi(t)=s(t)+j \cdot \sigma(t) \simeq e(t) \exp j\left(\omega_{0} t+\alpha(t)\right)=\underbrace{[e(t) \exp j \alpha(t)]}_{\text {complex envelope }} \exp j \omega_{0} t
$$

Complex stochastic process

If $\mathrm{s}(\mathrm{t})$ is a complex stochastic process, so, $\sigma(t)$ is also a complex stochastic process. That means that $\mathrm{s}(\mathrm{t})$ and $\sigma(t)$ have the same spectral density power.
Let us compute the cross correlation function $B_{\sigma s}(\tau)$.

$$
\begin{aligned}
& B_{\sigma s}(\tau)=E\{\sigma(t+\tau) s(t)\}=E\left\{\frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{s(u)}{t+\tau-u} d u \cdot s(t)\right\}=E\left\{\frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{s(u) s(t)}{t+\tau-u} d u\right\} \\
& =\frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{B_{s s}(u-t)}{\tau-(u-t)} d u=\frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{B_{s s}(v)}{\tau-v} d v
\end{aligned}
$$

Thus the cross correlation function of $\sigma(t)$ and $\mathrm{s}(\mathrm{t})$ is the Hilbert's transform of the correlation function of $\mathrm{s}(\mathrm{t})$.Also we can see that at the same time $\mathrm{s}(\mathrm{t})$ and $\sigma(t)$ are uncorrelated variables.

$$
B_{\sigma s}(\tau)=\frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{B_{s s}(v)}{\tau-v} d v \text { and } B_{\sigma s}(0)=\frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{B_{s s}(v)}{-v} d v=0
$$

Because $B_{s s}(v)$ is even!

Application of the analytic signal to the SSB modulation.

We want to write the modulated signal in the SSB case by using the analytic signal. We call v_{0} the carrier, $x(t)$ the modulating signal and $\varphi(t)$ the analytic signal associated to $x(t)$.
Four steps.
1-We build the analytic signal associated to $x(t)$.

$$
\varphi(t)=x(t)+j\left(x(t) * \frac{1}{\pi t}\right)
$$

Spectrum of $x(t)$
Spectrum of $\frac{1}{2} \varphi(t)=\hat{x}_{+}(v)$

2-We translate the $\hat{x}_{+}(v)$ spectrum by v_{0} (equivalent operation by multiplying $e^{j 2 \pi v_{0} t}$)
We get $\frac{1}{2} \varphi(t) e^{j 2 \pi v_{0} t}$.
3-Do the same operation for the left side of the spectrum.

$$
\psi(t)=x(t)-j\left(x(t) * \frac{1}{\pi t}\right) \xrightarrow{\sigma} \hat{x}(v)-j(-j \operatorname{sgn}(v) \hat{x}(v))=2 \hat{x}(v) H(-v)
$$

Spectrum of $\frac{1}{2} \psi(t)=\hat{x}_{-}(v)$
 Spectrum of $\frac{1}{2} \psi(t) e^{-j 2 \pi v_{0} t}$

$-v_{0}$
0

4-By adding the 2 spectrum we get $e(t)$ the emitted signal

$$
e(t)=\frac{1}{2} \varphi(t) e^{j 2 \pi u_{0} t}+\frac{1}{2} \psi(t) e^{-j 2 \pi u_{0} t}
$$

But we remark that $\varphi(t)$ and $\psi(t)$ are conjugated. Thus the emitted signal becomes :

$$
e(t)=\operatorname{Re}\left[\varphi(t) e^{j 2 \pi v_{0} t}\right]
$$

Example :
If

$$
\begin{aligned}
& x(t)=k \cos 2 \pi v t \\
& \varphi(t)=k \cos 2 \pi v t+j \cdot k \sin 2 \pi v t=k \cdot \exp 2 \pi v t
\end{aligned}
$$

The emitted $e(t)$ SSB is :

$$
e(t)=\operatorname{Re}\left[\varphi(t) e^{j 2 \pi v_{0} t}\right]=\operatorname{Re}\left[k e^{j 2 \pi v t} \cdot e^{j 2 \pi v_{0} t}\right]=\operatorname{Re}\left[k e^{j 2 \pi\left(v+v_{0}\right) t}\right]
$$

Thus :

$$
e(t)=k \cos 2 \pi\left(v+v_{0}\right) t
$$

Exercise:

We recall that $\sigma(t)$ is the Hilbert transform of $s(t)$ with the definition !

$$
\sigma(t)=v P \frac{1}{\pi t} * s(t)=v P \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(x)}{t-x} d x
$$

Give the Hilbert transform of :
a) $s(t-a) \quad ; a \in \mathbb{R}$
b) $\frac{d^{2}[s(t)]}{d t^{2}}$
c) $s(-t)$
d) $s(a t)$ in fonction of $\sigma(\bullet)$.

