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Design-time analysis vs run-time analysis
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Analysis of processes

linear algebraic
analysis techniques

Markov chain
analysis techniques

state-space analysis
techniques




Generic questions

terminating
It has only finite occurrence sequences
deadlock-free

each reachable marking enables a transition
live

each reachable marking enables an occurrence sequence
containing all transitions

bounded

each place has an upper bound that holds for all
reachable markings

1-safe

1 1s a bound for each place s

reversible

mO is reachable from each reachable marking, I.e., the
Initial marking is a so-called home marking.
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Specific questions

p3

pl p5
Is it possible to have a token inspoth p2 and p5? é
Will t3 always take place? & ,
Will t3 always take place assumlng rness"’? z
Is it possible to execute t1 after t4?
Can both p4 and p5 be empty at the ame time? ¢ ‘
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Formalization

Note: refinement of earlier link between Petri
net and transitions system (week 2/3) that is
closer to standard literature.
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Basic Petri net

Definition 1 (Basic Petrinet). A basic Petri net is a triple (P, T, F).
P is a finite set of places, T is a finite set of transitions (PNT =),
and F'C (P xTYU (1T x P) is a set of arcs (flow relation).

pl

« P={pl,p2}

o T={t1,t2}

« F={(p1,t1), (t1,p1),
(t1,p2), (p1,t2), (p2,12)}

tl t2
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Place transition net

Definition 2 (Place transition net (PT-net)). An Place tran-
sition net (or simply Petri net) is a tuple (P,T, F, W), where:

— (P, T, F) is a basic Petri net,
— W e FF— IN\ {0} is an (arc) weight function.

« P={pl,p2} pl
o T={t1,t2}
« F={(pl,t1), (t1,p2),
(P2,t2), (t2,p1)} 1 2
« W(pl1,t1)=2,
W(tl,p2)=2,
W(p2,t2)=1, and
W(t2,p1)=1

' PAGE 13



Multi-sets

Definition 3 (Multi-set). Let A be a set. IB(A) = A — IN is the
set of multi-sets (bags) over A, 1.e., X € IB(A) is a multi-set where
for each a € A: X(a) denotes the number of times a is included in
the multi-set.

pl

* Mo(p1) =2
* My(p2) =3

tl t2
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Operations on multi-sets

Let X and Y be two multi-sets

— The sum of two multi-sets (X 4 Y'), the difference (X —Y'), the
presence of an element in a multi-set (r € X), and the notion of
sub-multi-set (X <Y') are defined in a straightforward way.

— Theyv can handle a mixture of sets and multi-sets.

— The operators are also robust with respect to the domains of the
multi-sets, 1.e., even if X and Y are defined on different domains,
X+Y, X =Y, and X <Y are defined properly by taking the
union of the domains where needed.

— | X| =3 ,c4 X(a) is the size of some multi-set X over A.

— X(A") =304 X(a) denotes the number of elements in X with
a value in A" C A.

— 74 (X)) is the projection of X onto A’

Q ;4, i.e., (WA,'(X))(Q) —
X(a)ifae A" and (7a(X))(a) =0ifa g A’
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Notation

To represent a concrete multi-set we use square brackets, e.g., [a, a,b,a,b, c:} ,
[a®, b2, ], and 3[a] + 2[b] + [¢] all refer to the same multi-set with six
elements: 3 a’s, 2 0’s, and one c. | | refers to the empty bag, i.e.,

LI=0.

o M. = P
)=
[P1,p1,p2,p2,p2] =
[p12,p23] = t1 {2
2[p1]+3[p2]

* also denoted as (2,3)

: '. ) PAGE 16



Preset/postset

Definition 4 (Marking). Let N = (P,T, F,\W) be a Petri net. A
marking M of N is a multi-set over P, i.e., M € IB(P).

Definition 5 (Preset,postset). Let N = (P, T, F.W) be a Petri
net.

N [;Ift"’r(”“"’y) | (xr,y) € FF N a=y] is the preset of a.

— ae = [yW @) | (x,y) € F AN a=x] is the postset of a.

— Moreover, we extend the weight function for the situation that
there is not an arc connecting two nodes, i.e., W(xr,y) = 0 if

(x,y) & F.

PAGE 17



Examples

« opl =[t2]
* ple =[t17]
- op2 =[t17]
° p2e =[t2]
. opl = [t1] p1 o otl = ;plz]
. ple = [t1t2] * tle =[p2’]
. op2 = [t1] 2 © o2 =|p2]
. p2e = [t2 * t2e =[pi]
c otl =[pl 02
* tle = [pl,p2]
c ot2=[pl,p2]
° 120 =[] .




Firing rule

Definition 6 (Firing rule). Let N = (P, T, F,W) be a Petri net
and M € IB(P) be a marking.

— A transition t € T 1s enabled, notation (N, M)[t), if and only if,
M > et.
— An enabled transition t can fire while changing the state to M,

notation (N, M)[t)(N,M"), if and only if, M" = (M — et) + te.

pl

t2




Notations

Table 2 Formal Definition of a Petri Net

A Petri net is a 5-tuple, PN = (P, T, F, W, M;) where:

P ={pi ps ", Pm} is a finite set of places, Murata
T={t,t, -, t,} is a finite set of transitions,

FE (PxT)U (T x P)is a set of arcs (flow relation),
W: F— {1,2,3,---} is a weight function,

My P —~ {0,1,2,3, - - -} is the initial marking,
PNT=@and PUT+# 2.

A Petri net structure N = (P, T, F, W) without any specific initial
marking is denoted by N.

A Petri net with the given initial marking is denoted by (N, My).

A net N is constituted by

— a set S of places,
~ a set T of transitions such that SNT =, and

Desel/Reisig

— a set F of directed arcs (flow relation), F C (SUT) x (SUT), satisfying

FN(SxS)=FN(TxT)=0.

PAGE 20




Notations: Firing rule

The behavior of many systems can be described in terms
of system states and their changes. In order to simulate the
dynamic behavior of a system, a state or marking in a Petri
nets is changed according to the following transition (firing)
rule:

1) Atransition tis said to be enabled if each input place
pof tis marked with atleast w(p, f) tockens, where w(p,
n) is the weight of the arc from p to ¢,

2) Anenabled transition may or may not fire (depending
on whether or not the event actually takes place).

3) A firing of an enabled transition ¢ removes w(p, )
tokens from each input place p of t, and adds w(t, p)
tokens to each output place p of t, where wit, p) is the
weight of the arc from ¢t to p. Murata

A marking of a net N is a mapping m: Sy — IN where IV = {0,1,2,...}. A
place s is marked by a marking m if m(s) > 0. The null marking is the marking
which maps every place to 0.

A transition t is enabled by a marking m if m marks all places in *¢. In this
case t can occur. Its occurrence transforms m into the marking m’, defined for
each place s by

m{s}—1 ifs€*t~1*,
m(s)+1 if s €t* —*t,

Desel/Reisig )= { m(s) otherwise. I
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Basic properties of a marked Petri net

Definition 9 (Basic properties). Let N = (P, T, F,W) be a Petri
net and M € IB(P) be a marking.

— (N, M) is terminating if and only if there is a k € IN such that

| < k for any firing sequence o (i.e., (N, M)|c)).

— (N, M) is deadlock-free if and only if for any M € R(N, M)
there exists a transition t such that (N, M')[t).

— (N, M) is live if and only if for anyt € T and any M' € R(N, M)
there exists a M" € R(N,M") such that (N, M")[t).

— (N, M) is bounded if and only if there is a k € IN such that for
any M" e R(N,M) and any p € P: M'(p) < k.

— (N, M) is safe if and only if for any M' € R(N, M) and any
pe P: M(p) <1.

— (N, M) is reversible if and only if for any M'" € R(N,M): M €
R(N, M").




Terminating

(N, M) is terminating if and only if there is a & € IN such that
o| < k for any firing sequence o (i.e., (N, M)|o)).
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Deadlock-free

(N, M) is deadlock-free if and only if for any M’ € R(N, M) there
exists a transition t such that (N, M")|t).

: '. ) PAGE 25



Liveness

Transition t € T is live in (N, M) if and only if for any M’ &
R(N, M) there exists a M" € R(N, M’) such that (N, M")[t).

B PAGE 26



Basic idea of liveness

all
reachable
markings

markings
where t is
enabled
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Boundedness

Place p € P is k-bounded in (N, M) if and only if for any M’ €

Place p € P is bounded in (N, M) if and only if there is a & € IN
such that p is k-bounded.

(N, M) is bounded if and only if all of its places are bounded.

plis 1-bounded, plis 1-bounded,

1 : :
P p2 is 3-bounded bl p2 is unbounded
tl t2
St
PAGE 28



Safeness

Place p € P is safe in (N, M) if and only if p is 1-bounded.

(N, M) is safe if and only if all of its places are safe.

2 /@{ o
t1 t2 —»@—» t3 t4
p3
pl p5
/th ‘/@{ g
2 4>©—> 3 "

11
p3
pl p5

PAGE 29



Reversible/home marking.

(N, M) is reversible it and only if for any M" € R(N,M): M €
R(N.M').

Marking M" is a home marking in (N, M) if it is reachable from any
reachable marking, i.e., for any M” € R(N,M): M'" € R(N,M").

(N, M) is reversible if and only if M is a home marking.

ol [p2] is
home
marking

tl t2

V4
- -
\
e
=)
35 —
G PAGE 30
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Definition

Definition 10 (Reachability graph). Let N = (P,T, F.W) be a
Petri net and M € IB(P) be a marking. The reachability graph of
(N, M) is the graph (V. E) with as vertices V= R(N, M) the set of
all reachable markings and as edges £ = {(M',t, M") € V x 1T x
Vo (N, MY[EY(N,M")} the set of all possible state changes. Note
that (M’ t, M") € I denotes that M" is reachable from M’ by firing
t.

: '. ) PAGE 32



Reachability graph algorithm

1) Label the initial marking M, as the root and tag it "new".

2) While "new" markings exists, do the following:
a) Select a new marking M.
b) If no transitions are enabled at M, tag M "dead-end".

c) While there exist enabled transitions at M, do the following for
each enabled transition t at M:

I.  Obtain the marking M' that results from firing t at M.
. If M' does not appear in the graph, add M' and tag it "new".

lii. Draw an arc with label t from M to M' (if not already
present).

3) Output the graph.

: . PAGE 33



t3 t4

p5S

[pl,free,pd]

Step 1: Label the initial marking
MO as the root and tag it "new"
(indicated by green color).

: '. ) PAGE 34



Example (continued)

4>©—>
RCS

t3 t4

tl t2

p3
1 pS

[p1,free,p4] [p2,free,p4]
[pl,free,p4] ,‘

e o L

[p1,free,p5]
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Example (continued)

tl t2 t3 t4

p3
pl p5

[p1,free,p4] [p2,free,p4]

[pl,free,p4] [p2,free,p4] , [p1,p3,p4]
*‘ t
t t1 @
t4 t4
t4 t4

[p1,free,p5]
[p1,free,p5] [p2,free,p5]
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Example (continued)

/% free p4

tl t2 % t3 t4

p3
pl PS5

[pl.free,p4]  [p2.free,p4] o [p1,p3,p4] [p1,free,p4] [p2,free,p4] [pl,p3,p4]
» ;’ t2
T ¢ T g
t4 “ t4
t4 t4

[p1,free,p5] [p2,free,p5]

[p1,free,p5] [p2,free,p5]
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Example (continued)

%
RS

t3 t4

tl t2

p3
1 pS

[p1,free,pd] [p2,free,p4] [p1,p3,p4]

t2
u @

[pl,free,p4]  [p2free,pd] , [p1,p3,p4]

t .
t1 > "
t4

t4
tl

[p1,free,p5] [p2,free,p5]

a1 —@

[pl,free,p5] [p2,free,p5] [p1,p3,p3]
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Example (continued)

p2 free p4
t1 t2 —»O—» t3 t4
p3
pl PS5
[pl,free,pd]  [p2free,p4] [p1,p3,p4] [P2,p3,p4]
[pl,free,p4]  [p2.free,p4] o [p1,p3,p4] - t2
> > t1 t1
tl ‘ t4
t4 4 t4 t4
o t2 @ T
[p1,free,p5] [p2,free,p5] [p1,p3,p5] 2

[p1,free,p5] [p2,free,p5] [p1,p3,p5]
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Example (continued)

p2 free p4

tl t2 % t3 t4

p3

[pl,free,pd]  [p2,free,p4] , [p1,p3,p4] [p2,p3,p4]
t

@

[plfree,p4]  [p2.free,p4] ) [p1,p3,p4] [p2,p3,p4]
t

t4

[p1,free,p5] [p2,free,p5] [p1,p3,p5]

t2
[p1,free,p5] [p2,free,p5] [p1,p3,p5] [p2,p3,p3]
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Example (continued)

p2 free p4

tl t2 % t3 t4

p3
pl PS5

[pl,free,pd]  [p2.free,p4] , [p1,p3,p4] [P2,p3,p4]
t >

'

[pl.free,p4]  [p2.free,pd] , [p1,p3,p4] [p2,p3,p4]
t

tl

t4
t4

[p1.free,p5] [p2,free,p5] [p1,p3,p5] [p2,p3,p5]

t1 t2
[p1,free,p5] [p2,free,p5] [p1,p3,p5] [p2,p3,p5]
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[p1,free,p4]

[p1,free,p5]

Example (continued)

free p4

tl

[p2,free,p4]

p3
p5

/@<
2 —»Q—» t3 t4
W

[pl,free,p4]  [p2,free,p4] [p1,p3,p4] [p2,p3,p4]
[PLp3p4]  [p2,p3,p4] t2

[p2,free,p5]

[p1,p3,p5] [p2,p3,p5]

[p1,free,p5] [p2,free,p5] [p1,p3,p5] [p2,p3,p5]
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Example (complete)

[pl,free,pd]  [p2.free,p4] , [p1,p3,p4] [p2,p3,p4]
t

t3 t4

p3
pl pS

[p1,free,p5] [p2,free,p5] [p1,p3,p5] [P2,p3,p3]

 The marked Petri net is:
v’ deadlock free
v'live
v’ bounded
v safe
v'reversible

v all markings are home markings

PAGE 43
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Problem

(1,1)
tl il> itl

ps. (n,m) is a shorthand for [p1",p2™M]

. ' PAGE 45



Coverability tree algorithm

1) Label the initial marking M, as the root and tag it "new".
2)  While "new" markings exists, do the following:
a) Select a new marking M and remove the "new" tag.

b) If Mis identical to a marking on the path from the root to M, then tag
M "old" and go to another new marking.

c) If no transitions are enabled at M, tag M "dead-end".

d) While there exist enabled transitions at M, do the following for each
enabled transition t at M:

I.  Obtain the marking M' that results from firing t at M.

ii. If, on the path from the root to M, there exists a marking M" such
that M'(p) 2 M"(p) for each p and M'#M" (i.e., M" is coverable),
then replace M'(p) by w for each p such that M'(p) > M"(p).

li. Introduce M' as a node, draw an arc with label t from M to M', and
tag M' "new".

3) Output the tree.

: '. ) PAGE 46



tl

Step 1: Label the
initial marking M, as
the root and tag it
"new" (indicated by
green color).

[p1]
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Example (continued)

Step 2: While "new" markings exists, do the following:
. Select a new marking M and remove the "new" tag.

. If M is identical to a marking on the path from the root to M,
then tag M "old" and go to another new marking.
pl . If no transitions are enabled at M, tag M "dead-end".
. While there exist enabled transitions at M, do the

following for each enabled transition t at M:

- Obtain the marking M' that results from firing t at M.

- If, on the path from the root to M, there exists a
marking M" such that M'(p) 2 M"(p) for each p and
M'#M" (i.e., M" is coverable), then replace M'(p) by w
for each p such that M'(p) > M"(p).

- Introduce M' as a node, draw an arc with label t from M

tl to M', and tag M' "new"

[p1]
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Example (continued)

Step 2: While "new" markings exists, do the following:
. Select a new marking M and remove the "new" tag.

. If M is identical to a marking on the path from the root to M,
then tag M "old" and go to another new marking.
pl . If no transitions are enabled at M, tag M "dead-end".
. While there exist enabled transitions at M, do the

following for each enabled transition t at M:
- Obtain the marking M' that results from firing t at M.

- If, on the path from the root to M, there exists a
marking M" such that M'(p) 2 M"(p) for each p and
M'#M" (i.e., M" is coverable), then replace M'(p) by w
for each p such that M'(p) > M"(p).

- Introduce M' as a node, draw an arc with label t from M
tl to M, and tag M' "new"
[p1] [p1,p2"] [p1] [p1,p2"] [p1,p2"]

b2 ;‘tl‘ T @@

w+k — w'k — w e Ml  PAGE 49




Example (continued)

Step 2: While "new" markings exists, do the following:
. Select a new marking M and remove the "new" tag.

. If M is identical to a marking on the path from the root to
M, then tag M "old" and go to another new marking.
pl . If no transitions are enabled at M, tag M "dead-end".
. While there exist enabled transitions at M, do the following for

each enabled transition t at M:
- Obtain the marking M' that results from firing t at M.

- If, on the path from the root to M, there exists a marking M"
such that M'(p) = M"(p) for each p and M'#M" (i.e., M" is
coverable), then replace M'(p) by w for each p such that

M'(p) > M"(p).
- Introduce M' as a node, draw an arc with label t from M to
tl M', and tag M' "new"

[p1) PLPp2]  [pLp2”] pl] [p1,p2"] [p1,p2"]

2 a o
P ’ ¢ ® t1l )‘ t1l )‘

PAGE 50




Example (complete)

pl Step 3: Output the tree.
[p1] [p1,p2"] [p1,p2"]
t }’ T @@
02 Coverabillity graph:

[p1] [p1,p2"]

,‘tl"—)




Another example

pl p3 1.03
[p P ] Step 1: Label the initial marking
‘ M, as the root and tag it "new"
y (indicated by green color).
tl t2
il> [p1,p3] [p1,p2%,p3]
02 04 tl .

t2

[p1,p3,p4"]

Step 2 ...

PAGE 52



Example (continued)

t1 t2

[p1,p3] [p1,p2%,p3]
t1

t2

[p1,p3,p4"]

[p1,p3] [p1,p2%,p3]  [p1,p2“,p3]
1l

t1

t2 t2

1,p3,p4% o "
[P1.p3.p47] [p1,p2%,p3,p4"]

t2

[p1,p3,p4%] [p1,p2%,p3,p4"]

T

[p1,p3] [p1,p2%,p3]  [p1,p2%,p3]

t2 t2
[P1,p3,p4"] [p1,p2",p3,p4"]
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Example (continued)

[p1,p3] [p1,p2%,p3]  [p1,p2“,p3]

t1 t2 [p1,p3,p4™"] T\ [p1,p2°,p3,p4Y]

p2 p4 [p1,p3,p4%] [p1,p2%,p3,p4"]
[p1,p3] [p1,p2”,p3]  [p1,p2*,p3] [p1,p3] [p1,p2",p3]  [p1,p2“p3]

[01,p3,p4“] w: - :
[p1,p3,p [p1,p2",p3,p4"]

T\ [p1,p3,p4"] T\ [p1,p2%,p3,p4Y]
[p1,p3,p4"] [P1,p2",p3,p4"]

“1 [p1,p2*,p3,p4"]
[p1,p3,p4”] [P1,p2%,p3,p -

nolog




Example (continued)

[pl’pg] [pl,p2°’,p3] [pl,pzw,p?:]
” s t1
t2 h }
[p1,p3,p4"] [p1,p2%,p3,p4%]
t2
[p1,p2”,p3,p4"]
t1 t2 t2 (1,2 p3,pd°]
p1,p2%,p3,p [p1,p2" p3,pa*]
o
[p1,p3,p4"]
’ i [p1,p2%,p3,p4"]
t2

ﬁ [p1,p2%,p3,p4"]

[p1,p3] [p1,p2°,p3]  [p1,p2%p3]

[P1p3]  [p1.p2%p3]  [p1,p2”p3]
2 [p1.p3,p4"] [p1,p2%,p3,p4"]
p1,p3,p
[pl p3 p4‘” w w w P t2
[p1,p2",p3,p4"] u pLp2" 53 p
t2 ¢ )
‘ [p1,p2",p3,p4"]
[p1,p3,p4"] [P1,p2”,p3,p4"]

[p1,p3, p4‘°] [p1,p2”,p3,p4"]
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Example (continued)

pl p3
tl t2

p2 p4
[p1,p3] [P1,p2°,p3]  [p1,p2*p3]

Step 3: Output the tree.

[p1,p3]

[p1,p2%,p3]

[p1,p2%,p3]

t1

t2 [p1,p2",p3,p4"]

[p1,p3,p4"]

t2

[p1,p2%,p3,p4"]
t2 [p1,p2%,p3,p4"]

[p1,p2%,p3,p4"]

i [p1,p3,p4"]

2 [oL,p2"p3,p4"] [p1,p2%,p3,p4"]

Y [p1,p3,p4°] o

[p1,p2",p3,p4"] 4x

t2 w w

il [p1,p2%,p3,p4"] [p1,p2" p3,p4“]

o [p1,p2%,p3,p4"]

[p1,p3,p4"]

[p1,p2",p3,p4"]

[p1,p2",p3,p4"]
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Example (complete)

[p1,p3] [p1,p2%,p3]

t1 t2

[p1,p2p3]  [p1,p2°p3]

[p1,p2",p3,p4"]

[p1,p2",p3,p4"]

Coverabillity graph

[p1,p2",p3,p4"]

t1

[p1,p3,p4"]

[p1,p2",p3,p4"]

[p1,p2",p3,p4"]
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Coverability graph

* Take the coverability tree and simply merge nodes
with identical labels

(p1] (p1,p2%] [01,p2"] [p1] [p1,p2"]
o0 & @

[p1,p3] [p1,p2",p3]  [p1,p2“ p3] [ 1 3] [ 1.p2% 3]
pL.p pLl,ps,p
t2 ! P, r,b; I03,p4‘”] t1 )' tl
! [p14p2 X3€4]
t% | [p1, p?#’m;m‘”] v\ 273 ) t2 t2
®
[p1,p3,p4“] / [p1,p3,p4"] t1
N

[p1,p2%,p3,p4"]

v tl
t2 t2

[p1,p2",p3,p4"]
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Another example

b
(1,0) “
P t1l (1 O) (1 0)

v
(1,1) —t2> (0,0)

2 [> t1 [>(1‘*’) ’(Ow)E> (lw)—>(0w)
t2

12— O1)

<

1,w
p2 q (Lw)
marked net reachability coverability coverability
graph tree graph

ps. (n,m) is a shorthand for [p1",p2™M] e ace o



w-markings

Definition 11 (w-marking). Let N = (P, T, F, W) be a Petri net
with initial marking M.

An w-marking M of N is an extended multi-set over P, i.e., M &

If M(p) = w, then place p € P is said to be unbounded in M.

If M(p) # w for all p € P, then M s said to be w-free.

M is a reachable w-marking of (N, M) if and only if it appears
in the coverability graph of (N, M').

[p1,p3] [p1,p2%,p3]

t2 SN PAGE 60




 The coverability tree/graph is always
finite.

 The marked Petri net is bounded if and
only If the corresponding coverability

tree/graph contains only w-free
markings.

* The coverability tree/graph gives an
over-approximation.

 Different Petri nets may have the same
coverability tree/graph.




Basic relation between reachable markings

and coverability tree/graph

Theorem 1 (Relation). Let N = (P, T, F, W) be a Petri net and
M € IB(P) be a marking. Let M' be an w-marking appearing in the
coverability graph of (N, M) and n € IN an arbitrary number.

There exists an M" € R(N, M) such that for all p € P:

— If M'(p) # w, then M"(p) = M'(p).
— If M'(p) = w, then M"(p) > n.

B . Let n=180. There is a
N reachable marking
2 w) —2 @ with 0 tokens in p1
o and at least 180
(1,0) tokens in p2.
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Example (readers and writers)

p3
pl p5

construct coverability graph ...

' PAGE 63



Initial part

-
[p1,p4] "
t1/ —~4 " o
[02,p4] [p1,p5] ———— [p2,p5] [01,p3%,p5]
t4
[p2,p3%,p5]
[p2,p5] /

t2

[p1,p3%,p4] > (3

t1/ \t4

p2 p4
n 12 40—7 t3 t4
p3

pl p5
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Coverability tree

[02,p4] [p1,p5] ——— [p2,p5] —Z— [p1,p3*,p5]

\ /
/ . [02.p3° p5] [p1,p3%,p4]
pZ,p t2/ ) \ 4

t.
w . t .
{2}93 {434 2 [p1,p3",p5] t 1st 5]
[p1,p3,p5] [p2,p3",p4] [02,p3°,p4]

[p2,p3%,p4]  [pL,p3",p5] VRN 2/ \#" o/ \u
t2/ . t1 \t3 [p2,p3",p5] [p1,p4] [p1,p3%,p4]  [p2,p3",p5] [PLp3“p4]  [p2,p3",p5]
[p1,p3",p4] % p2,p3“p5]  [p1,p3”p4] 0 k 4 t2/ \t3
t3 [p21p3w1p4] [pl,pSw,pS] [plypsw,ps] [p2,p3w’p4]
! " B3 [p1,p3",p5] [p2,p3",p4]
2 w w
©ONE  pLpates] 2e3pAp st o o3 [p1p3“p4]  [p2,p3"p5]
oy IPLP3PS]  [p2,p3”p4] 2/ \t# u/ \¢ u\ k
/@ PLP3"PA]  P2PS"PSI (0203 pa]  (pLPS“PS]  (2pavpsl (P p]
[p2,p3",p5]  [p1,p3“,p4] 2/ \t w/ \13
[p1p3",p4]  [p2,p3",pS] [p2,p3*p5]  [p1,p3*,p4]
p2 P4
t1 2 4>©—> 3 t4
p3
pl pS
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Coverability graph

t2

[p1,p3",p4]

Z A

[p2,p4] [p2,p3",p4] [p1,p3",p5]
a1 RN

[p2,p3%,p5]




[p1,p4]
tr/ —~u

02,pA] [p1,pS]

[p2,p3*,p5] [p1,p3%,p4]

2/ \ a \ ¢
[p1,p3%,p5] 0 [p1,p3“,p5]
2,03",p4
[p2,p3%,p4] [02,p3.p4]

2/ \#

[p2,p5]
[p1,p3%,p4]

/  \t

[p2,p3",p4]  [p1,p3",p5]

t2/ \t4
t2 / u, w w
1,p3 { t4 N \ts [P2,p3P3] [p1.p4] T ] [p1,p3%,p4]  [p2,p3%,p5]
[p1,p3%,p4] [p2,p3%,p5]  [p1,p3“,p4] tZ\\N t2/ \t3
3 [p2.p3",p4]  [PLP3"PS] (o1 53 ps]  [p2,p3¥ pd]
09,030 5] o t3 [p1 7;30)@5{ [p;psw <4]
, 9 t1 t3 t2 t4
t2 t3 1,p3%,p5 2,p3% p4 w w o o
% / \ w [P1p37pS] - [p2,p3" pa] [p2,p3%,p5]  [p1,p3™,p4] [pP1,p3”,p4]  [p2,p3",p5]
[p1,p3",p5]  [p2,p3",p4] 2/ \t# u/ \ ‘
/3 [p1.p3"p4]  [p2,p3”,p5] v w " “
t [p2,p3%,p4]  [p1,p3",p5] n?2 n3* n4l  [n1.n3% n5l

[p2,p3%,p5]  [p1,p3"

t2

[p1,p3",p4]

% t4

[p2,p3",p4] n01,p3%,p5

RSNy

[p2,p3%,p5]

t2 [Pp1,p3,p3]
tl




Coverability graph (vector notation)

t2

N\

(1,0,0,1,0) (1,0,0,1,0)

W e ¢
(0,1,0,1,0) (1,0,001) \¥  (0,1,w,1,0) (1,0,w,0,1)
u. A
(0,1,0,0,1) (0,1,0,0,1)

- o @0101)— __~

t1
t2

t1

t2 —»@—» 3 t4
p3
pl p5




Analysis results

* pl, p2, p4, p5 are safe /Q /@i

 p3is unbounded 0 2 | m

- [p2,p5] is reachable 'p\@/ " p\@/

* [p1,p2] is not reachable
. [p1,p38° p5]is coverable

t2

[p1,p3",p4]

A

[p2,p3",p4] [p1,p3",p5]

w0 R4
[p2,p5] [p2,p3”,p5]

' PAGE 69
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Additional properties

A transition t is dead if and only if if does not appear
In the coverability graph.

 The coverability graph and reachability graph are
Identical if the marked Petri net is bounded (i.e., only
w-free markings).

 The marked Petri net is safe if only O's and 1's
appear in nodes.

* Any firing sequence of the marked Petri net can be
matched by a "walk" through the coverability graph.

* The reverse is not truel!!!!
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Limitation: Loss of information

pl pl
Two nets with the same coverability graph!
t1 tl
[p1] [p1,p2"]
p2 ’ tl P p2
{[p1],[p1,p2'], {[p1].[p1,p27],
[p1,p27, [p1,p27], [p1,p2°, [p1,p27],

[p1,p24], ...} [pl,p2%7], ...}
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State-explosion problem (1)



http://images.google.nl/imgres?imgurl=http://www.radgraphics.net/images/main/atomic%2520explosion%2520-%25204.jpg&imgrefurl=http://www.dewereldvankaat.be/archives/2006_12_01_archief.html&h=864&w=1081&sz=123&hl=nl&start=1&um=1&tbnid=f8w5zJ_ZH7XHbM:&tbnh=120&tbnw=150&prev=/images%3Fq%3Dexplosion%26svnum%3D10%26um%3D1%26hl%3Dnl%26rls%3DGGLJ,GGLJ:2006-48,GGLJ:nl%26sa%3DN�

State-explosion problem (2)

|
n place s iIs
| j—O— 2" bounded
| o _
Ol
L. o

Each round the number of tokens in s can be doubled. MM PACE T3


http://images.google.nl/imgres?imgurl=http://www.radgraphics.net/images/main/atomic%2520explosion%2520-%25204.jpg&imgrefurl=http://www.dewereldvankaat.be/archives/2006_12_01_archief.html&h=864&w=1081&sz=123&hl=nl&start=1&um=1&tbnid=f8w5zJ_ZH7XHbM:&tbnh=120&tbnw=150&prev=/images%3Fq%3Dexplosion%26svnum%3D10%26um%3D1%26hl%3Dnl%26rls%3DGGLJ,GGLJ:2006-48,GGLJ:nl%26sa%3DN�

Variants

« Construct the coverability graph on the fly
(i.e., do not first construct the coverability
tree): the graph may become smaller but
process is typically non-deterministic.

« Several approaches have been proposed to

construct "minimal" coverability graphs/sets
(see "Alain Finkel: The Minimal Coverability Graph
for Petri Nets. Applications and Theory of Petri Nets
1991: 210-243", and "Gilles Geeraerts, Jean-Francois
Raskin, Laurent Van Begin: On the Efficient

Computation of the Minimal Coverability Set for Petri
Nets. ATVA 2007: 98-113")
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Conclusion

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts




The coverability graph is finite but ...

 some information gets lost in case of unbounded
behavior, and

* it may be huge and impossible to construct.

i

l

1
r’,
= -'l‘.
F:, \.r-'.-ru_\sL J_. A 'ﬁ
X : '!-I ﬁ-_—,“/'? "
' i | )
= g |
7R S g
l ll \ 3 .li f *-rf-\-_
i ; ) B
; = 5

A Next: structural methods like
AR Invariants, siphons, traps, etc
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After this lecture you should be able to:

* Understand the formalizations, i.e., (P, T,F,W), M, (N,M)[t>(N,M"), etc.

 Determine whether a concrete marked net is terminating, deadlock-
free, live, bounded, safe, and/or reversible, whether a transition is
live and/or dead, whether a place is k-bounded, etc.

« Construct a Petri net that has a set of desirable properties, e.g., a
net that is live and bounded but not reversible.

« Construct the reachability graph of a marked net.
* Construct the coverability tree of a marked net.
« Construct the coverability graph of a marked net.

« Tell which properties can(not) be derived from the coverability
tree/graph.

« Understand the limitations of the coverability tree/graph (loss of
Information, inability to decide liveness, etc.).

« Derive conclusions from a concrete coverability tree/graph.
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Appendix: Formalization
of Coverability Graph .
based on Desel & Reisig

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts



Coverability tree & graph

» ldea: cut-off unbounded behavior using omega (w) markings

Formally, an w-marking of a net N is a mapping 77: Sy — IV U {w} where
w ¢ IN. Clearly, every (conventional) marking can be viewed as a particular
w-marking without w-entries.

(1,0, »,1, » ,1,2,0)

w-markings are interpreted as follows: If a marking m’ is reachable from a
marking m and satisfies m/(s) > m(s) for each place s, the occurrence sequence
leading from m to m’ can be iterated arbitrarily often (Proposition 5). If more-
over m'(sp) > m(sg) for some place so then the number of tokens on s¢ increases
with each iteration of the occurrence sequence. This increasing sequence of mark-
ings is now replaced by one w-marking m/ with m/(sg) = w, denoting that, for
each b € IN, there is a reachable marking that coincides with m’ for all places
except so and assigns at least b tokens to sy. More generally, several places may
map to w, representing simultaneous growth of the token count on these places.




Trivial example

pl
t1l
p2
marked net

(1,0)
t1

(1,1)

Ja

(1,2)
t1

reachability
graph

N
(1,0)

t1
(1,w)

Ju

(1,w)

coverability
tree

(1,0)
t1

(1,w)

Vs

coverability
grap

Ei;: ccccccc it PAGE 80
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Extended example

)
(1,0)

t1 (1,0) X(]_’o)

v t1
t2
(1,1) —=> (0,0) tl

t2
E> E> (1,w) —> (O,w) E> (Lw)—tz» (0,w)
t2 t1
tl

\4
(1,2) —> (0,1)
p2 - (1,w)
marked net reachability coverability coverability

graph tree graph
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Approach

1. Define omega (w) occurrence sequences.
2. Show that these are finite.
3. Construct coverability tree
4. Construct coverability graph
o
Pt aﬁ)l (1,0) ‘(1 0)
4 (1,w) l
(1,0 <4
0 E> (}t? (1(3 E> (1,w) ’ (0,w) E> (1, w) — ) (0,w)
ltz (1,w) l
©) (}; (1,w)
p2 |
marked net w-occurrence coverability coverablllty

sequences tree
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Example of a w-occurrence sequence

° W-0occurrence sequence: t1tl
* (1,0) -t1-> (1,w) -t1-> (1, w) pl

(1,0)
|1 t1 £2

(1,w)

|11
P2
(1,w)

marked net

. ' PAGE 83



.
A (finite or infinite) sequence of transitions ¢; {2 ¢3... is an w-occurrence

sequence of a marked net with initial marking mg if there exist w-markings
My, Ty, g, ... such that my and My coincide for all places and, for each index
1t occurring in the sequence t; ¢33 ... the following conditions hold:

{1) For each place s in *¢;, either 7;_1(s) > 0 or M;_1(s) = w
(the enabling condition).
(2) For each place s satisfying m;(s) # w,

mi(s) = m;_1(s) — | Fy N {(S,ti)}] + [Fy N {(t:,8) }H

(the conventional marking transformation).
(3) A place s satisfies 7;(s) = w if and only if
- either M;_1(s5) = w
(places marked by w remain marked by w),
- or M;-1(s) # w and there exists an index j, j < 1, such that m;(s) # w
and 7;(s) < M;_q1(8) — |Fxn N {(s,t:}} + |Fx N {(t;, )}
and 7; (s") < -1 (s") — {Fn D ) H +1Fv N{(ti, ')} for each place
s' satisfying m;(s') # w and m;_1(s") £ w
(places with increasing token count are marked by w).
(4) If ¢ > 1 then m;—y € {Mp,..., Mi—2}
(after reaching an w-marking the second time, the sequence stops).

We call an w-marking m reachable in a marked net if some w-occurrence sequence
leads to 7.



(1) Transitions need to be enabled

A(l 0)
1 (@) P
ON,
(1,0)
itl ‘(1 0)
() K Only tlis
Ve (Lw)

o) I enabled in

p2 ‘ (1,w) (1,0), not t2.

w-occurrence
sequences
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(2) For non-w place markings: business as

usual

2 ()

marked net

w-occurrence
sequences

(2) For each place s satisfying m;(s) # w,
m;(s) = mi-1(s) — |Fn N{(s8,t:)} + |Fn N {(t:,s) }]

(the conventional marking transformation).

. ' PAGE 86



(3) Introducing omegas

o (@) P (1,w) is

’ L "reachable”
(]l?)l ‘(1,0) from (110)
) W because
¢t2 (1,w) . .
O In there is a |
p2 ‘ X (j=0) such
w-0occurrence that [
marked net sequences

(3) A place s satisfies 71,(s) = w if and only if
- either M;_;(s5) = w
(places marked by w remain marked by w),
— or M;-1(s) # w and there exists an index j, j < 1, such that m;(s) # w
and 7, (s) < m;_1(8) — |[Fn N {(s, )} + |Fx N {(t:,8) }]
and 771 (s') < 7-1(5") — [Py N {(s", )|+ [Fiy (L, &)} for each place
s' satisfying m;(s') # w and m;_1(s") # w
(places with increasing token count are marked by w).




(4) Stop after second identical marking

(1,0)
pl t1 (1,0)
4(1 0 (1,w)
itl 4 Lo itl
t2 Lo it)l (1.0)
itz itz
(1,w)

0,
(0,w) itl (0,w)

"~ X
w-occurrence

marked net sequences

Marking
(O,w) is dead
while (1,w)
markings are
not
continued
after second
occurrence.
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« How long can a w-occurrence sequence be?
« How many w-occurrence sequences are there?
 Is the coverability tree/graph finite?
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Dickson's Lemma (1874-1954)

[\
N7,
Lemma 17, Let S be a finite set and let @1 g ¢3... be an nfinile sequence
of mappings from S to IN U {w}. There exists an infinite sequence of indices
2y 22 %3 ... which is strongly monotonic (v.e., i1 < iy < i3 < ---) such that, for
cach s i1n S,

i () < iy () S pis(s) < -

W @2 g3 @4 @5 96 ¢/ ¢8 @9 @lO @il @2 @S @k
1 1 ® 0 O 1 1 0 0 0O 1 1 ® O
o » 1 0 0 O 1 1 O 0 0 1 21 O
o ® 2 1 1 0 0 1 1 1 0 ® 1 1
o ® ® 1 1 1 1 1 2 2 2 3 |




Proof. We prove the following stronger proposition: For each subset S’ of 5,
there exists an infinite strongly monotonic sequence of indices iy, ¢2, 43, ... such
that, for each s in S5’ p;,(s) < wi,(s) < p;,{s) < ---. We proceed by induction
on the number of elements in S”.

Base. If S’ = § then nothing has to be shown.

Step. Assume S’ # @ and let s € S’'. By the induction hypothesis, there exists an
infinite strongly monotonic sequence #;, 9, 23, . . . such that, for each s’ in S'\ {s},

@i (5') < iy (s') < pin(s) < -0
Now we restrict the sequence t,,17s,23,... to indices i; satisfying
Pir(8) < 9i 1 (8), Pi(8) < wiin(8)y win(8) < Pinya(s) ...
Clearly, the obtained sequence 1, ,ix,, %k,, . . . satisfies the required property
Pix, (5) < iy, (5) < @i, () < -+

for each place s in S’. This sequence is infinite because, for each index iz, every
index #; in {Zx.4+1,%k42,7k+3 - - -} satisfying

5951(5) < Pipygy (3)1 ﬂoik-q-.:s(s)} {P‘ik+3(s) <.

belongs to the sequence, too. Such an index 7; always exists because every
nonempty subset of IV U {w} has a minimal element. O



Theorem 18, Every w-occurrence sequence of a finite marked net is finite.

Proof. By contraposition, assume a finite marked net that has an infinite w-
occurrence sequence £; {54s...,

e 1 3 - 19 ts
my — My —— Mg —+ -,

By Dickson’s Lemma {Lemma 17), there exists an infinite strongly monotonic
sequence of indices ¢1,12,%3 ... such that, for each place s,

mﬁ(s) < “ﬁfz[‘g) < TJ‘T{E{S) <o

Let i and j be two subsequent indices of the sequence i;,i5,i3.... By the defi-
nition of w-occurrence sequences (4) no w-marking appears twice in an infinite
w-occurrence sequence. Hence m;{(s) # m;(s) for at least one place s. By the
definition of w-occurrence sequences (3), M;(s) # w and M;(s} = w. Again by
(3), no place s satisfies 73;(s) = w and Mm;(s) # w. Hence 7; has more places
with w-entries than 7;, Therefore, the set of places with w-entries increases in-
finitely, contradicting the finiteness of the set of all places of the net. 0



Coverability tree

(1,w)
) |o
(1,0) *(1’0)

itl ltl (1,w) —>t2 (0,w)
1,w
( it; (Lw) i ; ltl

o

Diagrams are a bit misleading: vertices

labeled with a w-marking are really (0.w) (Lw) (1,w)
sequences, e.g., initial node is & rather
than (1,0).
w-occurrence coverability
sequences tree

Formally, the coverability tree of a marked net is defined as a directed graph
with a distinguished initial vertex and edges labeled by transitions:

~ the vertices are the finite w-occurrence sequences,

- a distinguished initial vertex is given by the empty sequence ¢ (which by
definition i1s an w-occurrence sequence),

— labeled edges are all triples {o, ¢, ¢ t) such that ¢ as well as o f are w-
occurrence sequences.



Finiteness

Theorem 19. The coverability tree of a finite marked net is finite.®

Proof. By contraposition, assume a finite marked net with an infinite coverabil-
ity tree. Each vertex ¢ of the coverability tree has only finitely many immediate
successors, one for each transition enabled by the w-marking reached by o. Hence
every vertex ¢ with infinitely many successors has at least one immediate succes-
sor which also has infinitely many successors. By assumption, the initial vertex
¢ has Infinitely many successors. Hence, starting with €, we can construct an
infinite directed path of the tree. The concatenation of the labels of the edges of
this path yields an infinite w-occurrence sequence — contradicting Theorem 18.

[

Corollary 20. A finite marked net has finitely many reachable w-markings.
G
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Fig.12. An unbounded marked Petri net




Marking graph
(1.e., reachability graph)

.O .O 703,10 ©,1,1,1) (1,0,0,1)

3 4 t1
2

(0,2,1,1) (1,1,0,1) \3

2 “ \;‘ t
t2|
st{e® DE .[_ (.20, \B  ©0,1,2
/ '-‘12
t1 14

©,1,1,2) (1,0,0,2)
T——tnoe) 13
(0,0,1,3)

taT—\-i"ﬂ. 0,3)
< B




Coverability tree

(1,G,0,0)

w /N

s2
'O | O (1, w, 0, 1) (0,0, 1,0)

AN

t1

s3 4

2
I,w 00 0,w,1,0 1,0,0,0
s (o 'I: (I, @ ) ( ) (
y 1{ (1, w, 0, )
{0, w, 1, w) (1, w, 0, w)
(1, w, 0, 0} (0, w, 1, ®)

find the error (also in paper)...
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Relation w-markings and normal

markings

Theorem 21. Let W be a reachable w-marking of a finite marked netl. For each
b in IN, there is a reachable marking m such that every place s satisfies:

~ if m(s) # w then m(s) = m(s),
~ if m(s) = w then m(s) > b.

Let b=180. There is a

"1 o marking reachable
mz with O tokens in p1
@w and at least 180

2 () tokens In p2.
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Boundedness = "all w-markings are w-

free"

Theorem 23. A place s of a marked net s not bounded if and only if some
reachable w-marking ™ satisfies m(s) = w (v.e., some vertex of the coverability
tree represents the w-marking M ).

Proof.

(&=) follows immediately from Theorem 21.

(===) Since there are only finitely many reachable w-markings by Theorem 19
there is a number b € IV such that each reachable w-marking @ satisfies either
m(s) = w or M(s) < b. Since s is not bounded, some reachable marking m
satisfies m(s) > b. Since m(s) does not coincide with 7i(s) for any reachable
w-marking 7(s), there exists some reachable w-marking 7 satisfying 7i{s) = w
by Theorem 22. | O
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b-boundedness

Corollary 24. A place s of a marked net is b-bounded if and only if each reach-
able w-marking T sotisfies M(s) £ w and M(s) < b.

1 (@) .
' (1,00)—t2 (O,w) _
| pl is 1-boundned (safe)
(10) P2 1s unbounded
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Dead transitions do not appear in cov.

tree

Theorem 25. A transition t of a marked nel is dead if and only if t does not
occur N any w-occurrence sequence (i.e., some arc of the coverability free 1s
labeled by t).

Proof.

(¢==) Assume some reachable marking m enables {. By Theorem 22, a cor-
responding reachable w-marking 772 satisfies 7i(s) # 0 for each place s in *f.
Hence, this w-marking enables ¢, too.

(==) Assume some reachable w-marking 77 enables ¢. By Theorem 21, there is
a corresponding reachable marking m that marks all places satisfving m = w at
least once. This marking m enables t, too. O
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Coverability graph (versus cov. tree)

AN

1, 0) (1 0)
(1, )— (Ow)E> (100)—»(0(»)
(1,w)
coverability coverability
tree graph

The coverabilily graph of a marked net is defined as an arc-labeled directed
graph with a distinguished initial vertex and edges labeled by transitions:

~ the vertices are the reachable w-markings,
~ the distinguished #nitial verfez is given by the w-marking that coincides with
the initial marking for each place,

— labeled edges are given by all triples (7i,¢,7') such that M and 77 are

reachable w-markings satisfying 7 .




Boundedness implies equivalence

Theorem 27. The coverabilily graph and the marking graph of « bounded marked
net are 1dentical (up to different co-domains of markings and w-markings).

Proof. The result follows immediately from Corollary 26 and the definition of
W-OCCUrrence sequences. =
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Appendix: Examples
taken from Murata F 9

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts




The coverability tree for a Petri net (N, M) is constructed

Coverab | I |ty by the following algorithm.

Step 1) Label the initial marking M, as the root and tag
tree s 1

it “new,
Step 2) While ““new"" markings exist, do the following:

Step 2.1) Select a new marking M.

Step 2.2) If Mis identical to amarking on the path from
the root to M, then tag M ““old” and go to
another new marking.

Step2.3) Ifnotransitions are enabled at M, tag M ‘dead-
end.”

Step 2.4) While there exist enabled transitions at M, do
the following for each enabled transition ¢ at
M:

Step 2.4.1) Obtain the marking M’ that results from
firing t at M.
Step 2.4.2) On the path from the root to M if there
exists a marking M” such that M’(p) =
M”(p) for each place pand M" + M”, i.e,,
M” is coverable, then replace M’(p) by w
for each p such that M'(p) > M"(p).
Step 2.4.3) Introduce M’ as a node, draw an arc with
label t from M to M’, and tag M’ "‘new.”

(same as before)



Mﬂ={ll}ﬂ}

t‘l ;3
M]=[ﬂ01) M3={lm'[}}
"dead-end"
rl ;3

M,=(0wl) Mc=(100)
“old"

M5={{}mlj
"old”
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Properties

Some of the properties that can be studied by using the
coverability tree T for a Petri Net (N, M) are the folfowing:

1) A net (N, M) is bounded and thus R(M,) is finite iff (if
and only if)  does not appear in any node labels in
T.

2) Anet(N, My)is safe iffonly 0's and 1's appear in node
labels in T.

3) A transition t is dead iff it does not appear as an arc
label in T.

4) If M is reachable from M,, then there exists a node
labeled M’ such that M < M".

My=(100)

M, =(001) M =(lw0)

N

My=(0w1) M =(100)
Dld
)
M.=(001)

"old"
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Coverability graph

M0={l00}
/ \
M, =(001) My=(1w0)
"dead-end" / \
M, =(001) Mg=(100)
old"
2
M5=(0(DI)

"old"
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M0={IIJL'I]

g £ (b)
(b)
Fig. 20. (a) The coverability tree for both Petri nets shown

Fig. 19. Two Petri nets having the same converability tret ;%0191 204 19(b). (b) Th bilit for the tw
(a) A live Petri net. (b) A nonlive Petri net. net;gghofwzm in Fig.( 1;2})andef;;‘;ra 1ty graph forthe two
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