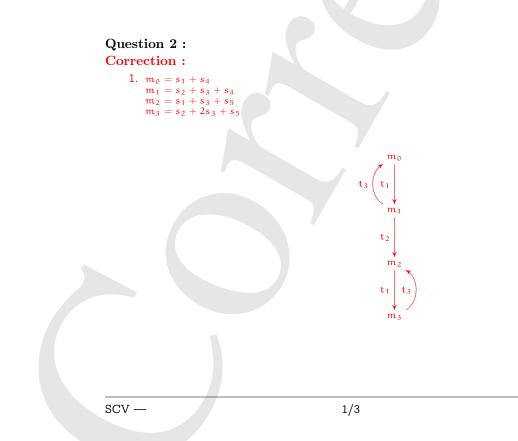
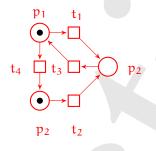
EFREI Jeudi 7 avril 2016 Master 1 Documents non autorisés


DE (SCV)

Petri nets

Question 1 : Correction :

- This is not possible (live \implies quasi-live).
- This is not possible : if there is a deadlock, then the system would be bounded by the bigger marking of the model places (which can not be increased).


 \Diamond

- 2. YES
- 3. It is not quasi-live $(t_4 \text{ is never fired})$ and it is deadlock-free.
- 4. No. It suffices to inverse the arc linking s_4 to t_4 $(t_4 \longrightarrow s_4).$

Question 3 : Correction :

1. The petri net having this reachability graph is the following :

2. It is not possible since there is no arc labeled with t_1 from state (2,0,0). Indeed, this marking is greater than the marking (1,0,0) from which t_1 is enabled.

t2

•

p₃

3. The petri net having this coverability graph is the following :

LTL and Büchi automata

Question 1 : Warm-up exercise on LTL Correction : 1. $G\phi = \neg(F\neg \phi)$

2. $F\phi = trueU\phi$

SCV —

 \diamond

Question 2 : Correction :

1. (a) Ggreen

- (b) $G(red \implies Fgreen)$
- (c) $G(green \implies (greenUyellow))$
- (d) $G(yellow \implies Xred)$
- 2. (a) Not satisfied (a counter example could be the sequence $(s_0.s_1.s_2)^{\omega}$.
 - (b) Not satisfied (a counter example could be the sequence $s_0.s_1.(s_2)^{\omega}$.
 - (c) Not satisfied (a counter example could be the sequence $(s_0)^{\omega}$.
 - (d) Satisfied.

Question 3 :

Correction :

- 1. The sequence $(\neg p.p)^{\omega}$ satisfies the second formula but does not satisfy the first one.
- 2. The sequence where p is never satisfied satisfies the second formula but does not satisfy the first one.
- 3. The sequence $(p,q)^{\omega}$ (where p and q are never simultaneously satisfied) satisfy second formula but does not satisfy the first one.

 \diamond

 \Diamond