
Fabien Calcado, Thomas Megel

Email: fabien.calcado@gmail.com
thomas.megel@fr.thalesgroup.com

EFREI 2015 - 2016

Real time systems

1 Multitask programming and scheduling – EFREI 2

Outlines

Monoprocessor scheduling
– Definitions and scheduling strategies for some task

models

Multiprocessor scheduling
– From a graph of task dependency

Multitask programming and scheduling – EFREI

Scheduling
Introduction
– The application is a set of n tasks that we call a task

system
• Simultaneous start (same first release date) or spread over the

time

– Terminology (reminder)
• The scheduling is the organisation of task execution on the

CPU(s)
» Sequencing, interleaving…

• The scheduling policy is the organization rule to execute tasks
on the CPU(s)

» Citations from… ? :

» “All we have to decide is what to do with the time that is
given to us.”

» “… is never late, nor is he early, he arrives precisely
when he means to”

Multitask programming and scheduling – EFREI

Scheduling
Introduction
– The application is a set of n tasks that we call a task

system
• Simultaneous start (same first release date) or spread over the

time

– Terminology (reminder)
• The scheduling is the organisation of task execution on the

CPU(s)
» Sequencing, interleaving…

• The scheduling policy is the organization rule to execute tasks
on the CPU(s)

» Citations from… Gandalf :

» “All we have to decide is what to do with the time that is
given to us.”

» “… is never late, nor is he early, he arrives precisely
when he means to”

Multitask programming and scheduling – EFREI 5

Scheduling

Introduction
– 2 jobs to execute

• Job A : Duration = 270 , Deadline = 320
• Job B : Duration = 15 , Deadline = 21

– Two different resources
• P1 : speed = 1 , switching duration = 1 , priority = to deadline
• P2 : speed = 10 , switching duration = 0 , priority = to the first

JA arrives before JB at t = 0

t0 16 21 320

JAJBP1

P2

Multitask programming and scheduling – EFREI 6

Scheduling

Execution duration (denoted by C)
– Time necessary for a processor to execute the code of a job

without any interrupt
• The execution duration depends on processor speed
• The execution duration est theretical (non constant in practice)

» worst case execution time (WCET)

» best case execution time

� In general, job execution time corresponds to WCET

– Methods to evaluate the execution duration
• On-line measure, off-line analysis

– Difficulties
• Complexity and range of execution paths
• Processor complexity

Multitask programming and scheduling – EFREI 7

Scheduling

Temporal properties of a job
– Earliest start time (request / release) : Tr

• Time when the job is ready (arrival time ou release time)
– Latest end time (deadline) : Td

• Time when the job shall be finished
– Execution duration of a job « i » (requirement) : Ci

Derived parameters
– Critical delay (temporal windows)

• Maximum acceptable delay to execute a task
– Latest start time
– Duration until the latest start time (laxity)
– Earliest end time
– Start time and end time of a job

• Possible preemptions

Multitask programming and scheduling – EFREI 8

Scheduling

Non-preemptive case
– Static margin : Ms = (Td - Tr) - Ci

• Ms ≥ 0
• If Ms = 0, no choice

Ci

Multitask programming and scheduling – EFREI 9

Scheduling

Preemptive case
– Dynamic margin or laxity : Md = (Td – Tc) – Ri

• Tc = current time
• Ri = remaining execution time for job i
• Md remains the same for an active job
• Md decrease dynamically for inactive jobs

i

r d

Multitask programming and scheduling – EFREI 10

Scheduling

Task notion
– A task is an entity that releases jobs

• The task is released and shall execute a job

– Three main classes
• Periodic : release a job at each period T (> 0)

» Implicit deadline: Deadline = period
» Constrained deadline : Deadline ≤ period

• Sporadic : job releases separated with minimum duration
(defined)

• Aperiodic : most general case, job releases shall be known

Multitask programming and scheduling – EFREI 11

Scheduling

Interval of analysis (periodic case)
– The execution lasts indefinitely but the configurat ion

behavior is periodic

– Interval of analysis is [0 , LCM (Pi)]
• Pi = period of any tasks
• Only valid for periodic case with simultaneous releases

Multitask programming and scheduling – EFREI 12

Scheduling

Schedule
– It is a method to forsee the allocation of resources

(conception step)
– A schedule is optimal if any temporal constraints are

met

Multitask programming and scheduling – EFREI 13

Scheduling

Schedule
– There is overload when the amount of task to execute is

such that any schedules lead to miss at least one
constraint for one task

• There is no optimal schedule

– A scheduling algorithm is optimal , given a class of
problems, when it generates optimal schedules

Multitask programming and scheduling – EFREI 14

Scheduling

Types of scheduling algorithms
– Static

• Schedule is decided before execution (off-line)
» Scheduling sequence is pre-processed based on temporal characteristics

of the tasks

– Dynamic
• Schedule changes during the execution (on-line)

» Scheduling choices are taken over the application execution by the
scheduler

• Non preemptive or preemptive
• Fixed priority (static ou dynamic)

Multitask programming and scheduling – EFREI 15

Scheduling
Off-line: advantages / drawbacks
– It requires the knowledge of the system and its tem poral

characteristics (fixed release dates)
• Lack of flexibility but strong predictability (unique instruction flow)

– Adapted to periodic model
• Schedule processed on one cyle (lcm of task periods): cyclic scheduler

(loop programming)

– Simplicity of the scheduler
• Low execution overheads

– Processing efficiency not requested for the generat ion of
the schedule

• Optimal algorihms implementation + extra constraints can be taken into
account (task precedence, task synchronization, arbitrary release dates,
etc.)

– Execution regularity
• Inflexible (cannot adapt to the environment)

Multitask programming and scheduling – EFREI 16

Scheduling
On-line: advantages / drawbacks
– Flexible

• Adapted to dynamic and evolving systems (able to make decision at time t)

– Processing efficiency required
• Simple scheduling policies

– Difficulty to take into account various constraints
• Tricky analysis and often pessimistic
• A priori less safe � need proofs

– Non conservative
• The processor is always used is a task is ready

Multitask programming and scheduling – EFREI 17

Scheduling

Off-line example: loop programming
– T1 : C=10 , Period=30
– T2 : C=8 , Period=30
– T3 : C=6 , Period=60
– T4 : C=10 , Period=60
– T5 : C=4 , Period=120

Multitask programming and scheduling – EFREI 18

Scheduling

Models – assumptions
– On tasks

• Types : sequential, parallel
• Relations : mutually dependent, independent
• Values: identical / different, constant / dependent on end time
• Abort: if misses on mandatory constraints, authorized, forbidden

– On resources
• Multiplicity : one or several (equivalent or not)
• Access mode: centralized ou distributed (memory resources)
• Requisition (preemption)

» Always possible (with or without loss)

» Possible at times
» Impossible

Multitask programming and scheduling – EFREI 19

Scheduling

Models – assumptions
– On event laws

• Totally or partially known (non real time)
• Predetermined or statistical

– On release law of tasks
• Release times of tasks
• Access times to resources
• Possible /impossible request intervals of resources

Multitask programming and scheduling – EFREI 20

Scheduling

Models – assumptions
– Problem statement = a choice among all assumptions

• Exhibition of several classes of problems with known solutions, often
optimal ones (hypothesis / constraints context)

• Following by:
» H1 = hypothesis from problem statement: to identify the class of problem
» H2 = condition on quantitative data of the problem

� Hypothesis of feasibility to verify

Multitask programming and scheduling – EFREI 21

Scheduling algorithms

Well-known algorithms
– Fundamental algorithms

• Most of the time, the other ones are a mix between them

– Static
• FP
• RMS

– Dynamic
• FCFS (First Come Fisrt Serve)
• RR (Round Robin)
• EDF (Earliest Deadlines First)
• LLF (Least Laxity First)

Multitask programming and scheduling – EFREI 22

Static scheduling algorithms

Preemptive fixed priority scheduling (FP)
– Tasks have a fixed priority
– Priority for the task having the highest one

• Should be able to be executed
• Possible preemption

– Example

a : Priority 1

b : Priority 2

Multitask programming and scheduling – EFREI 23

Static scheduling algorithms

Preemptive fixed priority scheduling (FP)
– Very close to HW (asynchronous I/O)

• Scheduling can be done at hardware level

– Punctuality for a task
• And for the others ?

– Low security
– Weak liveness

• If there are a lot of higher priority tasks, risk of starvation
• Drawbacks improvements

» In-line change of priority (Unix / Windows)

– Analysis remain complicated to handle control on
processing durations

• => classic system because no urgency notion

Multitask programming and scheduling – EFREI 24

Static scheduling algorithms

RMS (Rate Monotonic Scheduling)
– Created by Liu & Layland
– Model hypothesis (H1)

• Fixed priority algorithm (constant over the time)
• Possible preemption
• Each task is periodic
• No dependency between tasks
• Deadline is period
• The priority is the inverse of the period

– Feasibility hypothesis (H2)
• Sufficient condition exists (CS)

» Theoretical bound corresponding to the worst case

• Safe scheduling if this criteria is verified

Multitask programming and scheduling – EFREI 25

Static scheduling algorithms

RMS (Rate Monotonic Scheduling)
– Theoretical criteria

• n tasks
• Ci = execution duration
• Ti = period = job deadline

• Analysis if the CPU use rate (W) :
• If W ≤ U(n) , RMS is optimal

Multitask programming and scheduling – EFREI 26

Static scheduling algorithms

RMS (Rate Monotonic Scheduling)

– Necessary condition: W ≤ 1 (overload otherwise)
– Sufficent condition: W ≤ U(n)

– For W between CS and CN : impossible to know if
there is a solution or not

• One must « manually » produce the schedule on the interval of
analysis

Multitask programming and scheduling – EFREI 27

Static scheduling algorithms

RMS conclusion
– Advantages

• Can be extended to an aperiodic task
• Can be extended to handle overload

» Highest priority tasks are not impacted by the lowest ones

• Easy to implement
» Very close to loop programming

– Drawbacks
• Very simple hypothesis (rarely used in practice)
• Starvation if bug in a high priority task

» To check the duration taken by each task

Multitask programming and scheduling – EFREI 28

Dynamic scheduling algorithms

First Come/First Served
– Advantages

• Very easy and basic
» Non preemptive

• Liveness (if tasks ends ofc…)

– Drawbacks
• Punctuality (=> classical system)

» Can penalize short duration tasks if a long duration one is already
executed

• Security

– Useful to keep an implicit order of processing (fo r I/O)
• Spooler of printers

– FCFS is the « by default » strategy most of the time for a
lot of resources (memory, TCP/IP ports …)

Multitask programming and scheduling – EFREI 29

Dynamic scheduling algorithms

Shortest first
– Advantages

• Very easy and basic (Non preemptive)
• Liveness (if tasks ends ofc…)

– Drawbacks
• Punctuality (=> classical system)

» Long tasks are penalized

• Security
• Necessary to know task durations

» Something we do not necessarily know (classical system)

– Shortest duration first
• « shortest first » with preemption version
• Preemption when the shorter execution time of a task

becomes ready

Multitask programming and scheduling – EFREI 30

Dynamic scheduling algorithms

Round Robin (tourniquet)
– We share time in a « fair » way between any tasks tha t

are ready to execute
• We let (at most) « K » units of time to a task (quantum)
• After consuming its quantum of time, we put the task at the end

of the waiting queue of ready tasks

– Advantages
• Liveness
• Parallelize for I/O and processing parts

Multitask programming and scheduling – EFREI 31

Dynamic scheduling algorithms

Round Robin (tourniquet)
– Drawbacks

• Punctuality (=> classical system)
• Performances depends on the sie of the time quantum

» Too large � a task can wait a long time to have acces to the
processor (response time)

» Too small � context switches are too numerous and their
overheads become non negligible

– In pratice, RR is linked with fixed priority

Multitask programming and scheduling – EFREI 32

Dynamic scheduling algorithms

EDF (Earliest Deadline First)
– Model hypothesis

• Dynamic
• Aperiodic task

» Periodic problems included

• No dependency between tasks
• Known deadlines
• Unknown durations
• Priority is reverse to the relative deadline
• Preemption

– Hypothesis of feasibility
• Optimal if no overload (W ≤ 1)

Multitask programming and scheduling – EFREI 33

Dynamic scheduling algorithms

LLF (Least Laxity First)
– Model hypothesis

• Dynamic
• Aperiodic task

» Periodic problems included

• No dependency between tasks
• Known deadlines
• Known durations
• Priority is reverse to the laxity

» On-line, the scheduler computes the laxity and executes the one with the
least laxity

• Preemption

– Hypothesis of feasibility
• Optimal if no overload (W ≤ 1)

Multitask programming and scheduling – EFREI 34

Dynamic scheduling algorithms

Difference between EDF and LLF
– If laxity values used are those computed at release

times of the tasks
• Equivalent scheduling

– If laxity values are computed at each time
• LLF leads to more context switches

» Laxity of the executed task remains constant while the other
ready ones decrease their laxity

Multitask programming and scheduling – EFREI 35

Dynamic scheduling algorithms

Difference between theory and practice
– Unfortunately, previous hypothesis are almost never

verified
• Preemption

» Takes time

• Integration of critical / non critical tasks
» Often in overload

• Processing independance
» Resources sharing where the use is reduced to mutual exclusion only:

critical resources
» Precedence constraints that exhibit synchronization and communication

between tasks
� Dependency graphs

Multitask programming and scheduling – EFREI 36

Scheduling algorithm and synchronization

Priority and synchronization
– Livelock possibility

• If a lower priority task takes a mutex and then one with higher
priority requests it

– Solution : priority inheritance
• The lock owner inherits priority from the requesting one until it

releases the lock
• In an important system: any tasks often end up with the same

priority
• Increase the difficulty of scheduling analysis

Multitask programming and scheduling – EFREI 37

Multiprocessor scheduling

Scheduling on multiprocessor
– At any time t

• A job is executed by at most one processor
• A processor executes at most one job

– Non-cumulative scheduling
• It becomes more complex compared to the monoprocessor case

Multitask programming and scheduling – EFREI 38

Multiprocessor scheduling

Scheduling on multiprocessor
– Latencies are not negligible

• Communication, migrations

– In monoprocessor
• « On-line » optimal algorithm (EDF, LLF)

– In multiprocessor
• Necessary « to know the future » for optimal scheduling…

(Global EDF is non optimal)
• Different strategies

» Partitionned (forbidden migrations)
» Global algorithms

» Semi-partitionned (current trend, showing best results)

Multitask programming and scheduling – EFREI 39

Multiprocessor scheduling

Dependencies between jobs
– Jobs can be linked by a dependency graph

• Expresses precedency and concurrency
• Concurrent accesses to resources, serializations

Multitask programming and scheduling – EFREI 40

Multiprocessor scheduling

Dependencies between jobs
– Task release date is superior to any release dates of its

direct predecessors increased by their execution
duration

• A task will only be released if all its predecessors are finished

– Task deadline shall be inferior to any deadlines of its
direct successors decreased by their execution
duration

– Example for the graph (T1) ���� (T2) ���� (T3)
• Tr(T1) + C(T1) = Td(T2), earliest start time
• Td(T3) - C(T3) = Td(T2), latest end time

Multitask programming and scheduling – EFREI 41

Multiprocessor scheduling

Hypothesis on a concrete case
– Dependency graph
– Two resources are available (two processors)
– No preemption
– Completion in 6 units of time?

