
Application Layer 2-1

Chapter 2: outline

2.1 principles of network
applications
§  app architectures
§  app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

§  SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Processes communicating
process: program running

within a host.
v  within same host, two

processes communicate
using inter-process
communication (defined
by OS).

v  processes in different
hosts communicate by
exchanging messages

client process: process
that initiates
communication

server process: process
that waits to be
contacted

 v  aside: applications with P2P
architectures have client
processes & server processes

Application 2-2

Application Layer 2-3

Addressing processes
v  to receive messages,

process must have identifier
v  host device has unique 32-

bit IP address
v  Q: does IP address of host

on which process runs
suffice for identifying the
process?

v  identifier includes both IP
address and port numbers
associated with process on
host.

v  example port numbers:
§  HTTP server: 80
§  mail server: 25

v  to send HTTP message to
gaia.cs.umass.edu web
server:
§  IP address: 128.119.245.12
§  port number: 80

v  more shortly…

§  A: no, many processes
can be running on same
host

Application Layer 2-4

App-layer protocol defines
v  types of messages

exchanged,
§  e.g., request, response

v  message syntax:
§  what fields in messages

& how fields are
delineated

v  message semantics
§  meaning of information

in fields
v  rules for when and how

processes send & respond
to messages

open protocols:
v  defined in RFCs
v  allows for interoperability
v  e.g., HTTP, SMTP
proprietary protocols:
v  e.g., Skype

Application Layer 2-5

What transport service does an app need?
data integrity
v  some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

v  other apps (e.g., audio) can
tolerate some loss

timing
v  some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

throughput
v  some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

v  other apps (“elastic apps”)
make use of whatever
throughput they get

security
v  encryption, data integrity,

…

Application Layer 2-6

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Why do we need sockets?

Provides an abstraction for
interprocess communication

v  The services provided (often by the operating system)
that provide the interface between application and
protocol software.

Application

Network API

Protocol A Protocol B Protocol C

Definition

Functions

§ Define an “end- point” for
communication

§ Initiate and accept a connection
§ Send and receive data
§ Terminate a connection gracefully

Examples

n File transfer apps (FTP), Web browsers
n (HTTP), Email (SMTP/ POP3), etc…

Types of Sockets

•  Two different types of sockets :
–  stream vs. datagram

•  Stream socket :(a. k. a. connection- oriented socket)
–  It provides reliable, connected networking service
–  Error free; no out- of- order packets (uses TCP)
–  applications: telnet/ ssh, http, …

•  Datagram socket :(a. k. a. connectionless socket)
–  It provides unreliable, best- effort networking service
–  Packets may be lost; may arrive out of order (uses UDP)
–  applications: streaming audio/ video (realplayer), …

Addressing

Client Server

Addresses, Ports and Sockets
•  Like apartments and mailboxes

–  You are the application
–  Your apartment building address is the address
–  Your mailbox is the port
–  The post-office is the network
–  The socket is the key that gives you access to the right

mailbox

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 2-13

Socket programming

Two socket types for two transport services:
§  UDP: unreliable datagram
§  TCP: reliable, byte stream-oriented

Application Example:
1.  Client reads a line of characters (data) from its

keyboard and sends the data to the server.
2.  The server receives the data and converts

characters to uppercase.
3.  The server sends the modified data to the client.
4.  The client receives the modified data and displays

the line on its screen.

2: Application Layer 14

Example client-server app:
1) client reads line from standard

input (inFromUser stream) ,
sends to server via socket
(outToServer stream)

2) server reads line from socket
3) server converts line to uppercase,

sends back to client
4) client reads, prints modified line

from socket (inFromServer
stream)

ou
tT

oS
er

ve
r

to network from network

in
F

ro
m

S
er

ve
r

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

Socket programming

Application Layer 2-15

Socket programming with UDP

UDP: no “connection” between client & server
v  no handshaking before sending data
v  sender explicitly attaches IP destination address and

port # to each packet
v  rcvr extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
v UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

16

Connection Setup (SOCK_STREAM)

v  Recall: no connection setup for SOCK_DGRAM
v  A connection occurs between two kinds of participants

§  passive: waits for an active participant to request connection
§  active: initiates connection request to passive side

v  Once connection is established, passive and active
participants are “similar”
§  both can send & receive data
§  either can terminate the connection

17

Connection setup cont’d

v  Passive participant
§  step 1: listen (for incoming

requests)
§  step 3: accept (a request)
§  step 4: data transfer

v  The accepted connection
is on a new socket

v  The old socket continues
to listen for other active
participants

v  Why?

v  Active participant

§  step 2: request & establish
connection

§  step 4: data transfer

Passive Participant

 l-sock a-sock-1 a-sock-2

Active 1
socket

Active 2
socket

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
 clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-18

server (running on serverIP) client

Example: Java client (UDP)

se
nd

Pa
ck

et

to network from network

re
ce

iv
eP

ac
ke

t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (recall
that TCP sent “byte
stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

Client
process

client UDP
socket

Application 2-19

Application Layer 2-20

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET,
 socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =
 clientSocket.recvfrom(2048)
print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Application Layer 2-21

Application Layer 2-22

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:
 message, clientAddress = serverSocket.recvfrom(2048)
 modifiedMessage = message.upper()
 serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Example: Java client (UDP)
import java.io.*;
import java.net.*;

class UDPClient {
 public static void main(String args[]) throws Exception
 {

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();
 sendData = sentence.getBytes();

create
input stream

create
client socket

translate
 hostname to IP

address using DNS

Application 2-23

Example: Java client (UDP), cont.

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =
 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);
 clientSocket.close();
 }
}

create datagram
with data-to-send,

length, IP addr, port

send datagram
to server

read datagram
from server

Application 2-24

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
 public static void main(String args[]) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];

 while(true)
 {

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);
 serverSocket.receive(receivePacket);

create
datagram socket

at port 9876

create space for
received datagram

receive
datagram

Application 2-25

Example: Java server (UDP), cont

 String sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress,
 port);

 serverSocket.send(sendPacket);
 }
 }
}

get IP addr
port #, of

sender

write out
datagram
to socket

end of while loop,
loop back and wait for
another datagram

create datagram
to send to client

Application 2-26

Application Layer 2-27

Socket programming with TCP
client must contact server
v  server process must first be

running
v  server must have created

socket (door) that
welcomes client’s contact

client contacts server by:
v  Creating TCP socket,

specifying IP address, port
number of server process

v  when client creates socket:
client TCP establishes
connection to server TCP

v  when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
§  allows server to talk with

multiple clients
§  source port numbers used

to distinguish clients

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Transport Layer 3-28

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6 P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

server: IP
address B

Transport Layer 3-29

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Transport Layer 3-30

TCP flow control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

Transport Layer 3-31

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

socket()

bind()

listen()

accept()

read()

write()

read()

close()

Socket()

connect()

write()

read()

close()

TCP Client

TCP Server

Well-known port

blocks until connection from client

process request

Connection establishment
Data(request)

Data(reply)

End-of-file notification

Socket programming with TCP

Application Layer 2-33

Socket programming with TCP

Application Layer 2-34

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocket read request from

connectionSocket
write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket
close
clientSocket

Client – high level view
Create a socket

Setup the server address

Connect to the server

Read/write data

Shutdown connection

Application Layer 2-36

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Example: Java client (TCP)
import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

create
input stream

create
clientSocket object

of type Socket,
connect to server

create
output stream

attached to socket

Application 2-37

This package defines Socket()
and ServerSocket() classes

server port #

server name,
e.g., www.umass.edu

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

create
input stream

attached to socket

send line
to server

read line
from server

Application 2-38

close socket
(clean up behind yourself!)

Server – high level view

Create a socket

Bind the socket

Listen for connections

Accept new client connections

Read/write to client connections

Shutdown connection

Application Layer 2-40

Example app: TCP server

 from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:
 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024)
 capitalizedSentence = sentence.upper()
 connectionSocket.send(capitalizedSentence)
 connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

wait, on welcoming
socket accept() method

for client contact create,
new socket on return

Application 2-41

create
welcoming socket

at port 6789

create input
stream, attached

to socket

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

read in line
from socket

create output
stream, attached

to socket

write out line
to socket

end of while loop,
loop back and wait for
another client connection

Application 2-42

Application Layer 2-43

